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We study the phase transition between the high-temperature Coulomb phase and the low-temperature stag-
gered crystal phase in three-dimensional classical O�N� spin-ice model. Compared with the previously pro-
posed means CP�1� �complex projective model� formalism on the Coulomb-crystal transition of the classical
dimer model, our description based on constrained Ginzburg-Landau formalism is more conventional, due to a
fundamental difference between the O�N� spin ice and the dimer model. The situations with cubic symmetry as
well as easy-plane and easy-axis anisotropies are all studied. A systematic �=4−d expansion is used to study
the universality class of the phase transitions.
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I. INTRODUCTION

The three-dimensional �3D� classical dimer model
�CDM�, as the simplest model with an algebraic liquid phase
�usually called the Coulomb phase�, has attracted many ana-
lytical and numerical studies.1–4 The ensemble of 3D CDM
is all the configurations of dimer coverings, which are sub-
ject to a local constraint on every site: every site is connected
to precisely m dimers with 0�m�6 �denoted as CDM-m�,
and most studies are focused on the case with m=1. The
partition function of the CDM is a summation of all the
allowed dimer coverings with a Boltzmann weight that fa-
vors certain types of dimer configurations. For instance, the
most standard CDM-1 takes the following form:

Z = �
dimer configuration

exp�−
E

T
� ,

E = �
plaquettes

− U�nxy + nyz + nzx� . �1�

nxy, nyz, and nzx are numbers defined on each unit plaquette in
xy, yz, and zx planes, they take value 1 when this plaquette
contains two parallel dimers, and take value 0 otherwise.
When U�0, the ground state of this model favors to have as
many parallel dimers as possible, therefore when T�Tc, the
system develops columnar crystalline dimer patterns in Fig.
1�a� while when T�Tc the system is in the Coulomb phase
with power-law correlation between dimer densities, which
according to the standard Ginzburg-Landau �GL� theory can
only occur at critical points instead of stable phases. This
phase diagram has been confirmed by a number of numerical
simulations.1–4

The nature of the transition at Tc attracts most efforts. If
U�0, numerical studies confirm that this transition is con-
tinuous and the data suggest that at this transition the discrete
cubic symmetry is enlarged to an O�3� rotation symmetry.4

Analytically, to describe this locally constrained dimer sys-
tem, we can introduce the “magnetic field” Bi,�= �ni,�
−m /6��i with �=+x̂ ,+ŷ ,+ẑ, where �i= �−1�i is a staggered
sign distribution on the cubic lattice. The number ni,� is de-
fined on each link �i ,�� between sites i and i+�, and ni,�
=1,0 represents the presence and absence of dimer. Now the

local constraint of the dimer system can be rewritten as a
Gauss-law constraint �� ·B� =0. The standard way to solve this
Gauss-law constraint is to introduce vector potential A� de-
fined on the unit plaquettes of the cubic lattice and B� =��

�A� .5,6 Since vector A� is no longer subject to any constraint,
it is usually assumed that at low energy the system can be
described by a local field theory of A� , for instance, the low-
energy field theory of the Coulomb phase reads

F �� d3x��� � A� �2 + ¯ , �2�

which is invariant under gauge transformation A� →A� +�� f , f
is an arbitrary function of space.

Because the dimer number ni,� can only take discrete val-
ues, the magnetic field B� and the vector potential A� are both
discrete. Therefore mathematically we should introduce “ver-
tex operator” Lv���cos�2��A�− ã��	 to the field theory Eq.
�2�, and ã� is a nonzero background distribution of the vector
potential, which is introduced for any nonzero m with 0
�m�6. The Coulomb phase is a phase where this vertex
operator is irrelevant perturbatively. The vertex operator will
become nonperturbative and drive a phase transition when it

(i, y)

dc

a b

(i, x)

FIG. 1. �Color online� �a� The low-temperature columnar crys-
talline pattern of Eq. �1� studied in previous references; �b�, the
magnetic field distribution corresponding to this crystalline pattern
�a� with a zero net magnetic field in the large scale; �c�, the stag-
gered dimer order; and �d�, the net nonzero magnetic field corre-
sponding to the dimer crystal pattern in �c�.
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is large, and in order to describe this phase transition one can
introduce matter fields in the vertex operator which couple to
the gauge field minimally

Lv � �
�

cos�2����� − A� − ã��	 �3�

� is the phase angle of a matter field 	�ei�. Due to the
existence of the nonzero ã�, 	 moves on a nonzero back-
ground magnetic field, the band structure of the matter fields
have multiple minima in the Brillouin zone, and the transfor-
mation between these minima encodes the information of the
lattice symmetry.7 Therefore in addition to manifesting the
discrete nature of the gauge potential A�, the condensation of
the matter field leads to lattice symmetry breaking, which
corresponds to the crystal phase of the CDM. For instance,
the transition between the Coulomb and columnar crystal
phases of the CDM-1 model is described by the CP�1� model
�complex projective model� with an enlarged SU�2� global
symmetry.2,8 This field theory is highly unconventional, in
the sense that it is not formulated in terms of physical order
parameters. It is expected that more general CDM-m models
can also be described by similar Higgs transition although
the detailed lattice symmetry transformation for matter fields
would depend on m.

One might be tempted to describe the transition between
the Coulomb and columnar phases of CDM-1 trough a
Ginzburg-Landau approach. One can introduce an O�3� vec-
tor 
� with cubic-symmetry anisotropy in favor of six axial
directions and 

��� �1 represents sixfold degenerate co-
lumnar order. However, the hedgehog monopole configura-
tion of the O�3� vector 
� always involves a broken dimer,
i.e., a defect of the constraint.7 Then as long as we forbid the
presence of the defects, this O�3� model is monopole free
and it is well known that the monopole-free O�3� nonlinear
sigma model is equivalent to the CP�1� model,9 which has
very different critical exponents from the O�3� Wilson-Fisher
fixed point.10,11

II. ISOTROPIC O(N) SPIN ICE

In this paper we will study an O�N� generalization of the
CDM model. We define an O�N� spin vector Sa with unit
length �a�Sa�2=1 on each link �i ,�� of the cubic lattice, with
a=1, . . . ,N, and we assume that the largest term of the
Hamiltonian imposes an ice-rule constraint12 for O�N� spins
on six links shared by every site

�
�=x,y,z

Si,�
a + Si−�,�

a = 0. �4�

Systems with this constraint is usually called the spin ice. If
N=1, each spin can only take value �1, therefore every site
of the cubic lattice connects to three spins with +1 and three
spins with −1, which is equivalent to the CDM-3 model. Just
like the CDM, at high temperature, there is a Coulomb phase
with algebraic correlation between the O�N� vector Sa while
the low-temperature crystal phase is controlled by other in-
teractions. Notice that the O�N� index a and spatial index �
are completely independent from each other. In condensed
matter systems, O�3� spins are most common but larger O�N�

spin vectors with N=5 and 6 can be realized in spin-3/2
ultracold alkali atoms or alkaline earth atoms systems with-
out any fine tuning.13,14

In addition to the large constraint Eq. �4�, we can design
the Hamiltonian as following:

E = �
i,�,a

J1Si−�,�
a Si,�

a + �
i,a

�
���

J2Si,�
a Si+�,�

a . �5�

J1 is a Heisenberg coupling between spins along the same
lattice axis and J2 is a Heisenberg coupling between spins on
two parallel links across a unit square. If J1�0 and J2�0, in
the ground-state spins are antiparallel along the same axis,
but parallel between parallel links across a unit square, which
is an O�N� analog of the columnar state of the CDM in Fig.
1�a�. If J1 and J2 are both positive, in the ground state the
spins are antiparallel between nearest-neighbor links on the
same axis, as well as between parallel links across a unit
square, which is an analog of the staggered dimer configura-
tion in Fig. 1�c�. In fact, for both cases the zero-temperature
ground state of model Eq. �5� has large degeneracy because
the spins on x, y, and z axes are ordered independently, and
the energy does not depend on the relative angle between
Si,x

a , Si,y
a , and Si,z

a , i.e., the ground-state manifold has an en-
larged �O�N�	3 symmetry. Compared with the dimer system,
the O�N� spin vector is not discrete, therefore although we
can still introduce the O�N� vector potential A�

a as �
a

=������A�
a, we cannot introduce the vertex operator as we

did for the dimer model, which encodes the information of
the discreteness of the dimer variables. Also, it is impossible
to write down an O�N� invariant vertex operator. Therefore
we need to seek for a different formalism, which is a GL
theory of constrained order parameters. The applicability of
this formalism to the original CDM-m will be discussed later.

In this paper we will focus on the staggered spin order.
Following the magnetic field formalism of the CDM men-
tioned before, in order to describe this system compactly, we
introduce three flavors of O�N� vector field �

a =Si,+�
a �i with

�=x ,y ,z, and now the constraint Eq. �4� can be rewritten
concisely as

�
�

���
a = 0. �6�

Under the lattice symmetry transformation, �
a transforms as

T�:� → � + 1, �
a → − �

a, �for all �,�� ,

R�,s:� → − �, �
a → − �

a , �
a → �

a, �for � � �� ,

R��:� ↔ �, �
a ↔ �

a, �for � � �� . �7�

T� is the translation symmetry along � direction, R�,s is the
site centered reflection symmetry, and R�� is the reflection
along a diagonal direction.

The mapping between Si,�
a and �

a is very similar to the
dimer case in Fig. 1, and the staggered spin order corre-
sponds to the uniform order of �

a , and all flavors of spin
vectors are ordered. Therefore presumably �

a are the low-
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energy modes close to the transition and we can write down
the following symmetry allowed trial field theory for �

a with
softened unit length constraint:

F = �
�,a

�
a �− �2 + r − ���

2 ��
a + �

a

g��
�

���
a�2

+ F4.

�8�

If we just take the inverse of the Gaussian part of Eq. �8�
with r�0, we obtain the following correlation function of
�

a �with �=0 for simplicity�:

D��
ab �

�ab

r + q2���� −
gq�q�

r + �1 + g�q2 . �9�

In the limit with g→�, the constraint Eq. �6� is effectively
imposed and the correlation function reads

lim
g→�

D��
ab �q�� = 
�

a �q���
b�− q��� �

�ab

r + q2 P��,

P�� = ��� −
q�q�

q2 . �10�

P�� is a projection matrix that projects a vector to the trans-
verse direction, i.e., the limit g→� gives the longitudinal
spin wave an infinite energy. After Fourier transformation,
this correlation function Eq. �10� gives us the 1 /r3 power-
law spin correlation of the Coulomb phase. When r�0, the
vector �

a is ordered. We will keep g→� in the renormal-
ization group �RG� calculation, which is equivalent to the
ice-rule constraint of the system. Interaction F4 will not
spontaneously generate longitudinal spin wave and we can
check this as following: we can first keep g finite at the
beginning and calculate the leading order self-energy correc-
tion using Fig. 2�d�. And in the result after taking the limit
g→� the longitudinal wave still acquires infinite kinetic en-
ergy and the dressed correlation function is still fully trans-
verse.

In Eq. �8� when �=0, the quadratic part of the field theory
is invariant under O�N��O�3� transformation, the O�3�
symmetry is a combined flavor-orbital rotation symmetry. �
term will break this symmetry down to the cubic lattice sym-

metry and O�N� spin symmetry. The flow of � comes from
the two loop self-energy correction diagram �Fig. 2�d�	, and
the RG flow of � will contribute to the RG equation at the
order of �3, which is negligible at the accuracy of our calcu-
lation if we take �=4−d small. Therefore � is a constant
instead of a scaling function in the RG equation, hereafter we
will always assume � is small.

F4 in Eq. �8� includes all the symmetry allowed quartic
terms of �

a

F4 = u�
�
��

a

��
a �22

+ v �
���

��
a

��
a �2��

b

��
b�2

+ w �
���

��
a

�
a �

a��
b

�
b �

b . �11�

The u and v terms are invariant under an enlarged symmetry
�O�N�	3 while the w term breaks this symmetry down to one
single O�N� symmetry plus lattice symmetry. As already
mentioned, the ground-state manifold of model Eq. �5� has
the same enlarged �O�N�	3 symmetry. However, the w term
can be induced with thermal fluctuation through order-by-
disorder mechanism15 or we can simply turn on such extra
biquadratic term energetically in the J1-J2 model Eq. �5�. By
adjusting the ratio between u, v, and w in Eq. �11�, points
with various enlarged symmetry can be found. For instance,
if w+v=2u, F4 has a O�N��O�3� symmetry, and the O�3�
symmetry is the flavor-orbital combined rotation. Just like
the J1-J2 model on the square lattice,15 the quadratic cou-
pling �a�

a �
a with ��� as well as more complicated quar-

tic terms like ��ax
ay

a	��by
bz

b	 break the reflection sym-
metry of the system, and hence are forbidden.

Now a systematic RG equation can be computed with
four parameters u, v, w and r, at the critical point r=0 with
the correlation function Eq. �10�. In the calculation an �=4
−d expansion is used and the accuracy is kept to the first-
order � expansion. Based on the spirit of � expansion, all the
loop integrals should be evaluated at d=4, and because of the
flavor-orbital coupling imposed by the constraint Eq. �4�, we
should generalize our system to four dimension, and also
increase the flavor number to �=x ,y ,z ,�. Notice that the
flavor-mixing correlation in Eq. �10� significantly increases
the number of diagrams that we need to evaluate. Our RG
calculation is based on momentum shell integral, since the
correlation function Eq. �10� acquires strong momentum di-
rection dependence, after the momentum shell integral the
logarithmic correction will depend on the flavor of the loop
integrals. For instance, the loop diagrams in Figs. 2�a�–2�c�
expanded to the first order of � is evaluated as

A =
��̃��q� ���d4qD���q��D���− q��

��̃��q� ���d4q�1/q2�2 =
5

8
−

7

40
� + O��2� ,

B =
��̃��q� ���d4qD���q��D���− q��

��̃��q� ���d4q�1/q2�2 =
1

24
−

1

40
� + O��2� ,

a

x x
x x

x
x

y
y

x x
y y

b

c d

FIG. 2. ��a�–�c�	 Momentum-shell loop integrals evaluated to be

A ln�� / �̃�, B ln�� / �̃�, and C ln�� / �̃�, respectively, with param-
eters given by Eq. �12�. �d�, the self-energy correction that renor-
malizes � in Eq. �8�, this two-loop diagram will contribute to the
renormalization of u, v, and w at order �3, and hence is negligible in
our calculation.
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C =
��̃��q� ���d4qD���q��D���− q��

��̃��q� ���d4q�1/q2�2 =
13

24
−

23

120
� + O��2� .

�12�

For arbitrary N, the full-coupled RG equation at the first-
order � expansion reads

du

d ln l
= �u − 8A�8 + N�u2 − 6N�A + 2B�v2 − 6�A + 2B�w2

− 24�2B + BN�uv − 12�A + 2B�vw − 72Buw ,

dv
d ln l

= �v − 16B�4 + N�u2 − 4�2AN + 7BN + 4C�v2 − 4Cw2

− 16�2A + AN + 2BN + 4B�uv − 8�2A + 9B�vw

− 16�A + 6B�uw ,

dw

d ln l
= �w − 64Bu2 − 16Bv2 − 4�2A + 10B + BN + 2C

+ CN�w2 − 16�B + 2C�vw − 32Auw ,

dr

d ln l
= 2r − 8�2A + AN + 6B + 3BN�ur − 12�AN + 3BN�vr

− 12�A + 3B�wr . �13�

A similar set of recursion relations of quartic interaction
terms were computed in a different context in Ref. 16.

Let us first discuss the solution of this RG equation with
�=0. Solving this equation at r=0 with number A ,B ,C
given by Eq. �12�, we find eight fixed points, with one stable
fixed point for N�Nc=70, while for any N�Nc only in-
stable fixed points are found. The analytical expression of the
stable fixed point as a function of N with N�Nc can be
straightforwardly obtained by solving Eq. �13�, but the result
is rather lengthy. Instead, we will analyze the solution of Eq.
�13� with an expansion of 1 /N. For instance the stable fixed
point is located at

u� =
17�

84N
−

1139�

441N2 + O� �

N3� ,

v� = −
�

42N
−

1964�

1323N2 + O� �

N3� ,

w� =
3�

7N
−

4870�

1323N2 + O� �

N3� . �14�

Since now v�+w�=2u�, this fixed point has the enlarged
O�N��O�d� symmetry mentioned before. Close to the stable
fixed point, the three eigenvectors of the RG flow have scal-
ing dimensions

�1 = − � + O� �

N2� ,

�2 = − � +
4448�

567N
+ O� �

N2� ,

�3 = − � +
24950�

567N
+ O� �

N2� . �15�

At the stable fixed point Eq. �14�, r is the only relevant
perturbation, and plugging the fixed point values Eq. �14�
back to the RG equation, we obtain the critical scaling di-
mension

�r	 =
1

�
= 2 − � +

158�

7N
+ O� �

N2� . �16�

Since at the ground state all three flavors of spin vectors are
ordered, in the field theory F4, v should be smaller than 2u,
which is well consistent with the stable fixed point in Eq.
�14� with negative v�. This fixed point has positive w�, which
favors noncollinear alignment between spins on different
axes. Therefore the transition between Coulomb and noncol-
linear staggered state has a better chance to be described by
this fixed point.

Notice that had we included the anisotropic velocity �
into account, its leading RG flow will be at order of �2, and
the flow of � will contribute to the RG flow of u, v, and w at
order of �3, therefore it is justified to take � a constant in our
calculation as long as we keep � small enough. When � is
nonzero but small, we can solve the RG equation with A, B,
and C given by Eq. �12�, and the RG flows will only change
quantitatively, although the O�N��O�3� symmetry of the
stable fixed point is broken by �. Expanded to the first order
of �, the scaling dimensions of the three eigenvectors of the
RG equation at the stable fixed point become �1=−�, �2

=−�+ 4448�
567N + 2849936��

3988845N , �3=−�+ 24950�
567N − 30088528��

27921915N , and the scal-

ing dimension of r becomes �r	= 1
� =2−�+ 158�

7N − 1032��
1715N .

If we took the limit N→� in the physical system, we only
need to keep the terms linear with N in Eq. �13� and now the
equation becomes precise even with �=1. In this case the RG
flow of w is decoupled from u and v hence four of the eight
fixed points have w�=0, and all the others have w�

=3 / �7N�. The RG flow diagram for u and v with w=w�

=3 / �7N� in the large-N limit is depicted in Fig. 3.
As we promised in the beginning of this paper, we should

discuss the applicability of the constrained GL formalism

A
u

v

B

C

D

FIG. 3. �Color online� The schematic RG flow diagram in the
large-N limit with w=w�= 3

7N . The four fixed points are A , �u� ,v��
= �0,0�; B , � 1

24N , 1
12N �; C , � 17

84N ,− 1
42N �; and D , � 9

56N ,− 3
28N �. C is the

stable fixed point.
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discussed in this paper to the CDM-3, which corresponds to
the case with N=1. In our GL formalism, in the ordered
phase, the power-law spin-spin correlation still persists if the
long-range correlation is subtracted. For instance, the fluc-
tuation ��=�− 
�� is still subject to the constraint
������=0, therefore although the fluctuation is gapped, it
still leads to the 1 /r3 power-law correlation. But in CDM,
the crystal phase is more conventional, in the sense that the
crystal phase only has short-range connected dimer correla-
tion on top of the long-range order, which can be checked
with a low-temperature expansion of CDM.17 Like what was
discussed in the introduction, the key property of the case for
N=1 is that, the spins only take discrete value �1, the vertex
operator such as Eq. �3� in the dual field theory in terms of
vector potential can drive the system to a phase with short-
range connected correlation through a Higgs transition. The
effect of the vertex operator was missing in our GL formal-
ism.

We can solve Eq. �13� with N=1, where v and w terms are
identical. In this case in addition to the trivial Gaussian fixed
point, there is only one other fixed point at v�=2u�=� /34
with O�3� flavor-space combined rotation symmetry, which
is the same fixed point as the ferromagnetic transition with
dipolar interaction.18,19 In 3D space, the dipolar interaction
also projects a spin wave to its transverse direction. The
dipolar fixed point is instable against the O�3� to cubic sym-
metry breaking, therefore when N=1 our first-order � expan-
sion predicts a first-order transition. Based on the discussion
in the previous paragraph, one possible scenario for the
CDM-3 with staggered ground state is that, if we lower the
temperature from the Coulomb phase, after the first-order
transition of a, there has to be another “Higgs-type” phase
transition that destroys the power-law connected correlation.
Or there can be one single strong first-order transition that
connects the Coulomb phase and staggered dimer crystal di-
rectly.

III. O(N) SPIN ICE WITH EASY PLANE ANISOTROPY

Model Eq. �5� is invariant under cubic lattice symmetry
and we can certainly turn on various anisotropies to this
model, like what was studied in the CDM-1 model.2 For
instance, let us modify the model Eq. �5� slightly

E = �
i,�,a

J1,�Si−�,�
a Si,�

a + �
i,a

�
���

J2,��Si,�
a Si+�,�

a . �17�

If J1,x=J1,y �J1,z�0, and J2,xy =J2,xz=J2,yx=J2,yz�J2,zx
=J2,zy �0, the O�N� spin vectors in the xy plane, Si,x

a and Si,y
a

have a stronger tendency to order compared with Si,z
a . There-

fore when we lower the temperature from the high-
temperature algebraic phase, the O�N� vectors in xy plane are
expected to order first at critical temperature Tc1. Notice that
since the linear interflavor coupling is still forbidden by the
reflection symmetry in Eq. �7�, the order of x

a and y
a does

not imply the order of z
a. In the field theory close to Tc1, the

anisotropy can be described by an extra mass term for
�am2�z

a�2 in the free energy, which is clearly a relevant
perturbation at the critical point r=0

F = �
�,a

�
a �− �2 + r��

a + �
a

m2�z
a�2 + �

a

g��
�

���
a�2

+ F4. �18�

In the equation above we have taken �=0 for simplicity.
To calculate the RG equations for F4, we still need to in-
crease the dimension and flavor number to four with �
=x ,y ,z ,�, and the anisotropy of the generalized system will
prefer the O�N� vectors to order on three of the four axes. At
the critical point r=0, due to the relevance of the extra mass
term, we can safely take m→�, and the correlation function
between �

a reads

lim
g,m→�,r→0

D��
ab �q�� = 
�

a �q���
b�− q��� �

�ab

q2 Q��,

Q�� = ��� −
q�q�

q2 , �,� � �, q2 = qx
2 + qy

2 + qz
2,

Q�� = 0, � or � = � . �19�

Using the correlation function Eq. �19�, the RG equation at
the critical point reads

du

d ln l
= �u − 8A�8 + N�u2 − 4N�A + B�v2 − 4�A + B�w2

− 4B�8 + 4N�uv − 8�A + B�vw − 48Buw ,

dv
d ln l

= �v − 16B�4 + N�u2 − 4�AN + 3BN + 4C�v2 − 4Cw2

− 16�2A + AN + BN + 2B�uv − 8�A + 5B�vw

− 16�A + 3B�uw ,

dw

d ln l
= �w − 64Bu2 − 16Bv2 − 4�A + 6B + BN + 2C + CN�w2

− 16�B + 2C�vw − 32Auw ,

dr

d ln l
= 2r − 8�2A + AN + 4B + 2BN�ur − 8�AN + 2BN�vr

− 8�A + 2B�wr . �20�

Now A=8 /15, B=1 /15, and C=2 /5, which is different from
the isotropic case, due to the different form of the correlation
functions. Solving this equation at r=0, we find a stable
fixed point for large enough N. Again we will not try to write
down the lengthy solution of the RG equation, instead we
will expand the solution to the order of � /N2, now the stable
fixed point is located at

u� =
27�

112N
−

1431�

490N2 + O� �

N3� ,

v� = −
3�

56N
−

879�

490N2 + O� �

N3� ,
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w� =
15�

28N
−

1983�

490N2 + O� �

N3� . �21�

Again, since v�+w�=2u�, this fixed point has an enlarged
O�N��O�d−1� symmetry. Close to the stable fixed point,
the three eigenvectors of the RG flow have scaling dimen-
sions

�1 = − � + O� �

N2� ,

�2 = − � +
942�

25N
+ O� �

N2� ,

�3 = − � +
1104�

175N
+ O� �

N2� . �22�

�2 is the largest scaling dimension. The critical N is Nc
�59, below which the stable fixed point disappears. Plug the
fixed point value Eq. �21� back to the last RG equation in Eq.
�20�, we obtain the scaling dimension of r at the fixed point

�r	 =
1

�
= 2 − � +

138�

7N
+ O� �

N2� . �23�

If we keep lowering the temperature after the order of x
a

and y
a then eventually z

a will also order at temperature
Tc2�Tc1. After the order of x

a and y
a, the O�N� symmetry is

broken down to its subgroup. Let us first assume w�0 in F4,
i.e., the three flavors of O�N� vectors are collinear with each
other in the low-temperature ordered phase. Let us assume
that in the intermediate phase the expectation value 
x

a�
�
y

a���1,0 , . . . ,0�, now the O�N� symmetry is broken
down to O�N−1� symmetry generated by Lie algebra �ab
with a ,b=2, . . . ,N. This symmetry breaking implies that the
degeneracy of the N components of z

a will be lifted at Tc2.
Because w�0, the nonzero expectation value of x

1 and y
1

will prefer z
1 to order next at lower temperature, which is

essentially an Ising transition with order parameter z
1. From

now on we will denote z
1 as z. z will couple to the gapped

fluctuations x=x
1− 
x

1� and y =y
1− 
y

1� through the con-
straint, and the entire low-energy field theory at Tc2 reads

F = z�− �2�z + �
�=x,y

��− �2 + m2�� + g��
�

����2

+ O�z
4� . �24�

After taking the limit g→�, the critical correlation function
of z reads

lim
g→�

Dzz�q�� �
1

m2 qz
2

qx
2 + qy

2 + qx
2 + qy

2 + ¯

. �25�

Therefore this transition at Tc2 is effectively a z=2 transition
with scaling dimension �qz	=2�qx	=2�qy	=2. Now the total
effective dimension is 4, and the �z�4 term is a marginally
irrelevant perturbation, therefore this transition is a mean-
field transition with logarithmic corrections. Notice that the
Goldstone modes after the O�N� to O�N−1� symmetry

breaking are harmless to this transition. The Goldstone mode
can be described by �x

a��y
a��0,�2 , . . . ,�N� that forms a

vector representation of O�N−1�, and in order to guarantee
the gaplessness of the Goldstone modes, close to Tc2 the
following coupling between z and �� is the lowest-order
coupling that is allowed:

Fgoldstone � �
�

z
2����� �2. �26�

This term only generates irrelevant perturbations for z at
the transition. Couplings like z

2��� �2 is forbidden due to its
ability to renormalize the mass of Goldstone mode �� .

If w�0 in F4, then the three flavors of O�N� vectors are
perpendicular to each other in the low-temperature ordered
phase. Let us assume that in the intermediate phase between
Tc1 and Tc2 the expectation values 
x

a���1,0 , . . . ,0� and

y

a���0,1 ,0 , . . . ,0�. Now the O�N� symmetry is broken
down to the O�N−2� symmetry generated by �ab with a ,b
=3, . . . ,N. Due to the presence of w term in F4, at Tc2 the
order parameters should be z

a with a=3, . . . ,N, which forms
a vector representation of O�N−2�. In the intermediate phase
there are in total 2N−3 Goldstone modes, they are �x

a

= �0,0 ,�x
3 , . . . ,�x

N� that corresponds to the O�N� Lie algebra
elements �1a with a=3, . . . ,N; �y

a= �0,0 ,�y
3 , . . . ,�y

N� that
correspond to the O�N� Lie algebra elements �2a with a
=3, . . . ,N; plus a rotation mode between x

1 and x
2, denoted

as �12. Again the order parameter z
a will couple to these

Goldstone modes through the constraint. The field theory
close to Tc2 reads

F = �
�=x,y

�
a=3

N

K��
a �− �2���

a + �
a=3

N

z
a�− �2 + r�z

a

+ �
a=3

N

g��zz
a + �x�x

a + �y�y
a�2 + O��z

a�4	 . �27�

K is in general not one and will flow under RG. But at the
first order of � expansion it can be taken as a constant. Notice
that the interaction between Goldstone modes ��

a have to be
irrelevant to guarantee their gaplessness. The universality
class of this transition at r=0 can be calculated using the
correlation function of z

a after taking the limit g→�

lim
g→�,r→0

Dzz
ab =

Pzz

qx
2 + qy

2 + Kqz
2�ab. �28�

P�� is the transverse projection matrix. The first-order � ex-
pansion leads to the following scaling dimension and critical
exponent:

�r	 =
1

�
= 2 −

N − 1

N + 5
� , �29�

which is identical to the 3D O�N−2� Wilson-Fisher �WF�
fixed point although higher-order expansions may deviate
from the WF fixed point. Therefore our formalism implies
that with large enough N, the easy-plane anisotropy will split
the transition discussed in the previous section to two
second-order transitions.
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IV. O(N) SPIN ICE WITH EASY AXIS ANISOTROPY

In model Eq. �17�, if we make the following choice of
parameters: J1,z�J1,x=J1,y �0 and J2,zx=J2,zy �J2,xy =J2,xz
=J2,yx=J2,yz, then when we lower the temperature from the
algebraic phase, the O�N� vectors along the z axis will order
first at temperature Tc1. Similar to the previous section, this
easy-axis anisotropy can be described by an extra mass gap
m for both x

a and y
b modes in the field theory Eq. �8�, and

z
a becomes the only order parameter at low energy. How-

ever, now we can no longer take the limit m→� because
with this limit all the correlation functions will vanish. If we
keep m finite, the correlation function of z

a takes a similar
form as Eq. �25�

lim
g→�

Dzz
ab�q�� �

�ab

m2 qz
2

qx
2 + qy

2 + qx
2 + qy

2 + ¯

�30�

therefore this transition is again an effective a z=2 mean-
field transition. A similar situation with easy-axis anisotropy
has been studied in Ref. 20 although there the easy axis was
along the diagonal direction.

If the temperature is lowered even more from Tc1 then at
Tc2 the spin vectors within xy planes will order next. Again
the nature of this transition would depend on the sign of w in
F4. If w�0, i.e., the three flavors of O�N� vectors order
collinearly then if z

a orders along direction 
z
a�

��1,0 , . . . ,0�, at temperature Tc2 x
1 and y

1 will become the
critical modes. x

1 and y
1 are coupled to the gapped fluctua-

tion z=z
1− 
z

1�, and the low-energy field theory describing
x and y is identical to Eq. �18� with N=1. By solving the
RG equation Eq. �20� with N=1, no stable fixed point is
found.

If w�0, the critical modes at Tc2 is x
a and y

a with a
=2, . . . ,N, which form vector representations of O�N−1�.
These two critical modes are coupled to gapless Goldstone
mode �z

a= �0,�z
2 , . . . ,�z

N� with field theory

F = �
�=x,y

�
a=2

N

�
a �− �2 + r��

a + �
a=2

N

K�z
a�− �2��z

a

+ �
a=3

N

g��z�z
a + �xx

a + �yy
a�2 + F4�x

a,y
a� . �31�

Now F4 only involves two flavors of O�N−1� vectors x
a and

y
a. The RG equation for F4 can be calculated in the same

manner as we did before. If we take K=1, then the RG

equation for F4 takes the same form as Eq. �20� but with
A=5 /8, B=1 /24, and C=13 /24. With large enough N there
is still a stable fixed point and the answer is qualitatively
unchanged when K deviates from one slightly.

V. SUMMARY AND DISCUSSION

In this work we studied the transition between high-
temperature Coulomb phase and the low-temperature stag-
gered spin ordered phase in the O�N� spin-ice model.
Higher-order � expansion is demanded to obtain more quan-
titatively accurate results. The model Eq. �5� can be simu-
lated directly numerically, and a comparison between the
critical exponents obtained from a higher-order RG calcula-
tion and the simulation can be used as a test of our con-
strained GL field theory Eq. �8�. The columnar phase with
J1�0 and J2�0 is also interesting. But since the columnar
order does not correspond to the uniform order of �

a , the
order-parameter description is more complicated. The colum-
nar order is equivalent to order of x

a at momentum Q1
= �0,� ,��, y

a at momentum Q1= �� ,0 ,��, and z
a at mo-

mentum Q1= �� ,� ,0�. Therefore presumably we could de-
scribe this transition with condensation of �

a at all three
wave vectors. However, just like the Coulomb-columnar
transition in CDM-1 discussed in Sec. I, some topological
configuration of these order parameters may be forbidden,
which potentially can change the universality class com-
pletely. We will study the phase transition of the columnar
order in future.

The CDM is also considered as a simple analog of the
spin-ice materials such as Ho2Ti2O7 and Dy2Ti2O7,21–23

where the Ho3+ and Dy3+ magnetic moments reside on the
sites of a pyrochlore lattice, and the ground state of these
moments satisfies the same ice-rule constraint as Eq. �4�. The
Coulomb phase of the spin ice materials with fractionalized
“monopole” like defect excitation has been observed
experimentally.24 The formalism developed in our work is
largely applicable to the pyrochlore lattice while the symme-
try analysis and the number of quartic terms are different. A
complete symmetry analysis is demanded in order to cor-
rectly understand the O�N� spin ice on the pyrochlore lattice.
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